skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Xueyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study a class of bilevel spanning tree (BST) problems that involve two independent decision‐makers (DMs), the leader and the follower with different objectives, who jointly construct a spanning tree in a graph. The leader, who acts first, selects an initial subset of edges that do not contain a cycle, from the set under her control. The follower then selects the remaining edges to complete the construction of a spanning tree, but optimizes his own objective function. If there exist multiple optimal solutions for the follower that result in different objective function values for the leader, then the follower may choose either the one that is the most (optimistic version) or least (pessimistic version) favorable to the leader. We study BST problems with the sum‐ and bottleneck‐type objective functions for the DMs under both the optimistic and pessimistic settings. The polynomial‐time algorithms are then proposed in both optimistic and pessimistic settings for BST problems in which at least one of the DMs has the bottleneck‐type objective function. For BST problem with the sum‐type objective functions for both the leader and the follower, we provide an equivalent single‐level linear mixed‐integer programming formulation. A computational study is then presented to explore the efficacy of our reformulation. 
    more » « less